Forecasting Disconnected Exchange Rates
نویسنده
چکیده
Catalyzed by the work of Meese and Rogoff (1983), a large literature has documented the inability of empirical models to accurately forecast exchange rates out-of-sample. This paper extends the literature by introducing an empirical strategy that endogenously builds forecast models from a broad set of conventional exchange rate signals. The method is extremely flexible, allowing for potentially nonlinear models for each currency and forecast horizon that evolve over time. Analysis of the models selected by the procedure sheds light on the erratic behavior of exchange rates and their apparent disconnect from macroeconomic fundamentals. In terms of forecast ability, the Meese-Rogoff result remains intact. At short horizons, the method cannot outperform a random walk, although at longer horizons the method does outperform the random walk null. These findings are found consistently across currencies and forecast evaluation methods. • JEL: C4, C5, F31 •
منابع مشابه
The Comparison among ARIMA and hybrid ARIMA-GARCH Models in Forecasting the Exchange Rate of Iran
This paper attempts to compare the forecasting performance of the ARIMA model and hybrid ARMA-GARCH Models by using daily data of the Iran’s exchange rate against the U.S. Dollar (IRR/USD) for the period of 20 March 2014 to 20 June 2015. The period of 20 March 2014 to 19 April 2015 was used to build the model while remaining data were used to do out of sample forecasting and check the forecasti...
متن کاملA hybrid computational intelligence model for foreign exchange rate forecasting
Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...
متن کاملForecasting exchange rates: An optimal approach
This paper looks at forecasting daily exchange rates for the United Kingdom, European Union, and China. Here, the authors evaluate the forecasting performance of neural networks (NN), vector singular spectrum analysis (VSSA), and recurrent singular spectrum analysis (RSSA) for forecasting exchange rates in these countries. The authors find statistically significant evidence based on the RMSE, t...
متن کاملComparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کامل